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BACKGROUND: Although substantial evidence suggests that high and low temperatures are adversely associated with nonaccidental mortality, few
studies have focused on exploring the risks of temperature on external causes of death.

OBJECTIVES: We investigated the short-term associations between temperature and external causes of death and four specific categories (suicide,
transport, falls, and drowning) in 47 prefectures of Japan from 1979 to 2015.
METHODS: We conducted a two-stage meta-regression analysis. First, we performed time-stratified case-crossover analyses with a distributed lag nonlinear
model to examine the association between temperature and mortality due to external causes for each prefecture. We then used a multivariate meta-regression
model to combine the association estimates across all prefectures in Japan. In addition, we performed stratified analyses for the associations by sex and age.

RESULTS: A total of 2,416,707 external causes of death were included in the study. We found a J-shaped exposure–response curve for all external causes of
death, in which the risks increased for mild cold temperatures [20th percentile; relative risk ðRRÞ=1:09 (95% confidence interval [CI]: 1.05,1.12)] and
extreme heat [99th percentile; RR=1:24 (95%CI: 1.20, 1.29)] compared with those for minimummortality temperature (MMT). However, the shapes of the
exposure–response curves varied according to four subcategories. The risks of suicide and transport monotonically increased as temperature increased, with
RRs of 1.35 (95%CI: 1.26, 1.45) and 1.60 (95%CI: 1.35, 1.90), respectively, for heat, whereas J- and U-shaped curves were observed for falls and drowning,
with RRs of 1.14 (95%CI: 1.03, 1.26) and 1.95 (95%CI: 1.70, 2.23) for heat and 1.13 (95%CI: 1.02, 1.26) and 2.33 (95%CI: 1.89, 2.88) for cold, respectively,
comparedwith those for cause-specificMMTs. The sex- and age-specific associations varied considerably depending on the specific causes.

DISCUSSION: Both low and high temperatures may be important drivers of increased risk of external causes of death. We suggest that preventive meas-
ures against external causes of death should be considered in adaptation policies. https://doi.org/10.1289/EHP9943

Introduction
External causes of death are death caused by acute exposure to phys-
ical agents such as mechanical energy, heat, electricity, chemicals,
and ionizing radiation and the broad categories include transport,
falls, drowning, suicide, homicide, and other external causes.1

According to the Global Health Estimates 2016 reported by the
World Health Organization (WHO), the transport, falls, and suicide
categories were the 4th, 17th, and 18th leading causes of death,
respectively, in the WHOWestern Pacific Region.2 The number of
external causes of death steadily increased between 1990 and 2016,
and the identification of potential risk factors for external causes of
death and cause-specific categories is required.3,4

Extreme weather events are a significant public health concern.
Although substantial evidence has suggested the risks of cold and
heat onmortality, as reviewed bySong et al.,5 a small number of pre-
vious studies have examined the relationship between temperature
and cause-specific mortality, including external causes.6,7,8,9 These
studies have reported that heat or heat waves were associated with

an increased risk of external causes of death.6,7,8,9 A study from
Estonia showed that both extreme cold and heat increased all exter-
nal causes of death.10 A recent study in the United States reported
that a 1.5°C anomalously warm year would lead to an additional
1,601 [95%confidence interval (CI): 1,430; 1,776)] injury deaths.11

Given that each specific category of external causes of death has
unique characteristics, which death rates varied by season, sex, and
age12 and investigating the extent to which temperature is adversely
associated with each specific cause and subgroups by sex and age is
warranted. Furthermore, Mitchell et al.13 indicated that some poten-
tial flaws in previous studies (e.g., a small sample size, use of
monthly averaged temperature and health data, and a linear
assumption for the association) may limit the validity of their
findings.6,8,10,11,14 More rational assumptions and approaches are
needed to providemore accurate estimates, particularly for the short-
term associations between temperature and cause-specific external
causes of death, which would ultimately help decision makers for-
mulate preventionmeasures and policies targeted at specific causes.

In the present study, we examined the short-term associations
between temperature and external causes of death and four most
common specific categories (i.e., suicide, transport, falls, and
drowning) in Japan from 1979 to 2015, taking into account the
nonlinear and delayed influence of the temperature–mortality
association. We hypothesized that the nonlinear shapes of the ex-
posure–response curves might differ according to the specific cat-
egories of external causes of death. We also examined whether
the associations differed by sex and age.

Methods

Data Collection
We collected death certificate data for external causes of death and
daily weather variables from 47 prefectures in Japan from
1 January 1979 to 31 December 2015. The daily counts of external
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causes of death, including stratification by sex and age groups,
were transformed from a computerized death certificate database
maintained by theMinistry of Health, Labor andWelfare of Japan.
Informed consent was not needed given that we obtained deidenti-
fied data. All external causes of death were categorized according
to the 9th and 10th revisions of the International Statistical
Classification of Diseases and Related Health Problems (ICD-915;
ICD-1016): ICD-9 codes E800–E999 and ICD-10 codes V01–Y98.
Cause-specific external causes of death outcomes included suicide
(ICD-9 codes E950–E958; ICD-10 codes X60–X84), transport
(ICD-9 codes E800–E848; ICD-10 codes V01–V99), falls (ICD-9
codes E880–E888; ICD-10 codes W00–W19), and drowning
(ICD-9 codes E910; ICD-10 codesW65–W74).

Meteorological data were obtained from hourly measurements
provided by the JapanMeteorological Agency for a single weather
station in the capital city of each prefecture (except for two prefec-
tures with a station adjacent to the capital city), including data on
mean ambient temperature (in degrees Celsius), relative humidity
(in percentage), and daily total precipitation (in millimeters). We
calculated the daily mean dew point temperature as a measure of
humidity using mean temperature and relative humidity.17,18 The
daily amount of precipitation was categorized into three levels: a)
sunny days with no precipitation, b) lower than the 50th percentile,
and c) over the 50th percentile for each prefecture.

Statistical Methods
A two-stage meta-analysis was conducted using multi-prefectural
daily time-series data. In the first stage, a time-stratified case-
crossover design for each prefecture was used to estimate the
association between mean temperature and each health outcome.
In the second stage, a multivariate meta-regression analysis was
used to combine prefecture-specific estimates across all 47 pre-
fectures. All statistical analyses were performed using R software
(version 3.5.2; R Development Core Team).

First-stage modeling. We used a time-stratified case-crossover
design with a distributed lag nonlinear model (DLNM) based on a
conditional quasi-Poisson regressionmodel for each prefecture.19,20

We incorporated a time stratum in the model to adjust for seasonal-
ity and long-term time trends, which is equivalent to the case-
control days matching in the time-stratified case-crossover design
by the same day-of-week within the samemonth in the same year.19

To explore the associations of mean temperature on all and four cat-
egories of external causes of death, we used a quadratic B-spline for
the exposure–response association, with two internal knots equally
located at the 33rd and 66th percentiles of prefecture-specific tem-
perature distributions. This choice for the optimal number of knots
was based on minimizing the quasi-Akaike information criteria.21

We also applied themaximum lag of up to 14 d using a natural cubic
spline with three equally spaced knots on a log scale to examine the
delayed influence of the nonlinear exposure–response associations.
The maximum lag days were guided by country-level lag–response
associations for external causes of death in our initial analyses
(Figure S1), which showed that the cold risks on all external causes
of death and drowning lasted for 14 d. Furthermore, the 3-d moving
average dew point temperature (a natural cubic spline with three
degrees of freedom), precipitation (categorical variable), and public
holidays (binary variable) were included in the model as time-
varying confounders. Strata with no death counts were excluded
from the analysis (Table S1).

Based on the lag-cumulative nonlinear temperature–mortality
associations fitted in the model above, we quantified heat and cold
risks on the all and four categories of external causes of death,
expressed as the relative risk (RR) for heat and cold temperatures
comparedwith the risk forminimummortality temperature (MMT),
where the minimum risk was identified between the 1st and 99th

percentiles of temperature. Given that the exposure–response curves
varied considerably in four categories, differentMMTswere chosen
for each health outcome and each prefecture accordingly. Different
temperature percentiles for cold and heat were also chosen for each
health outcome, where the highest risks were identified below or
above the MMTs, given the restriction of the range between the 1st
and 99th percentiles of temperature.

Second-stage modeling. To combine the prefecture-specific
results estimated from the first-stage modeling, we performed a
multivariate meta-regression based on a random-effect model.22

To better explain the between-location variability, we included
the prefecture-specific mean temperature and temperature range
in the model as meta-predictors. To investigate heterogeneity, we
calculated the I2 and tested the multivariate extension of the
Cochran’s Q statistic.23,24 In addition, from the model fit, the best
linear unbiased prediction was used to predict prefecture-specific
estimates. When calculating the prefecture-specific RRs, we used
the fixed percentiles of temperature for cold or heat across prefec-
tures (which were the same as those at the country level),
although the MMTs varied among the prefectures. Furthermore,
we used a univariate meta-regression with the prefecture-specific
log(RR) and the corresponding standard errors by adding several
prefecture-level variables (longitude, latitude, average of mean
temperature, range of mean temperature, average of dew point
temperature, and median of daily total precipitation) one at a time
and then estimated the ratio of RR, indicating how the prefecture-
specific RRs changed per unit increase in each prefecture-level
variable.

Subgroup Analysis
We performed stratified analyses by sex (males and females) and
two age groups (<65 y for younger people and ≥65 y for older
people) using the same first- and second-stage modeling above.
When pooling the cumulative RRs in each subgroup, we used the
same temperature percentiles for MMT, cold, and heat used in
the total population.

Sensitivity Analysis
To assess the robustness of our results, we performed several sen-
sitivity analyses. First, we changed the number of knots from two
knots at the 33rd and 66th percentiles to three knots at the 25th,
50th, and 75th percentiles for the mean temperature. Second, we
changed the maximum lag period from 14 to 7 d. Third, we
changed the cutoff to define the categorized precipitation from
the relative measure of the 50th percentiles for each prefecture to
the same absolute measure at the median of prefecture-level aver-
age precipitation across all 47 prefectures (i.e., 6.6 mm). Lastly,
we repeated the analyses with the exclusion of outliers for the
daily external causes of death that occurred as a result of the great
earthquake disasters in Japan. We defined potential outliers as
five times the interquartile range over the 75th percentile for each
prefecture on the earthquake dates (Table S2).

Results
A total of 2,416,707 external causes of death were included in this
study, accounting for 6.89% of all causes of mortality during the
same period in Japan (Table 1). Of the total number of cases, more
than half of the deaths were males for all external causes (65.53%)
and its cause-specific (suicide: 68.08%, transport: 71.90%, falls:
61.23%, and drowning: 57.80%). For all external causes (55.84%),
suicide (73.42%), and transport (66.39%), the majority of cases
occurred in younger people, whereas older people accounted for
the majority of death counts for falls (70.85%) and drowning
(65.54%). Table 2 shows the distributions of prefecture-level
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average weather variables, ranging from 9.0°C to 23.1°C for daily
mean temperature, 3.5°C to 18.0°C for daily dew point tempera-
ture, and 3:6 mm to 12:1 mm for daily total precipitation. Tables
S3 and S4 show the summary statistics of external causes of death
andweather variables for each prefecture.

Figure 1 shows the pooled exposure–response curve of the
overall lag-cumulative association between mean temperature
and all external causes of death and the spatial distribution of
RRs for cold and heat in 47 prefectures in Japan. The association
between temperature and all external causes of death was nonlin-
ear, and MMT was identified at the 72nd percentile of tempera-
ture. The highest risk for cold was reached at the 20th percentile
of temperature for all external causes of death with an RR of 1.09
[95% CI: 1.05, 1.12], and a significant heat risk was observed
with an RR of 1.24 (95% CI: 1.20, 1.29) at the 99th percentile
compared with those for the MMT (Table 3). The RRs for cold
tended to be higher in the southern prefectures, whereas those for
heat were higher in the northern prefectures (Figure 1B,C). The
country-level lag–response curves for all external causes of death
show the delayed effects for cold and heat lasted for 14 d and 5 d,
respectively (Figure S1).

Figure 2 shows the exposure–response curves for each cause-
specific external cause of death. The shapes of the curves varied
depending on the causes, in which the risks of suicide and trans-
port monotonically increased as temperature increased, whereas
the estimated curves for falls and drowning were J- and
U-shaped, respectively. Given the different exposure–response
curves among health outcomes, different MMTs and the percen-
tiles of temperature for cold and heat were chosen to calculate the
RR (Table 3 and Figure 2). For suicide and transport, only heat
risks were observed with RRs of 1.35 (95% CI: 1.26, 1.45) and
1.60 (95% CI: 1.35, 1.90), respectively, compared with those at
the first percentile of temperature. For falls, the RRs for cold and
heat were estimated to be 1.13 (95% CI: 1.02, 1.26) and 1.14
(95% CI: 1.03, 1.26), respectively, compared with those for the
MMT at the 19th percentile of temperature. The RRs of drowning
were larger than those for other specific causes and were esti-
mated to be 2.33 (95% CI: 1.89, 2.88) for cold and 1.95 (95% CI:
1.70, 2.23) for heat compared with those at the 77th percentile of
temperature. The lag–response patterns for cause-specific

categories varied considerably (Figure S1). In general, the risks
of drowning for cold or heat lasted longer than those for suicide,
transport, and falls.

Figure 3 shows the spatial distribution of RRs in the 47 prefec-
tures for cause-specific external causes of death. In general, the RRs
of suicide, falls, and drowning for heat were higher in the northern
prefectures (Figure 3A,D,F, respectively), whereas the RRs of
drowning for cold were higher in the southern prefectures (Figure
3E). The prefecture-specific RRs are listed in Table S5A,B.

In the meta-regression analysis, the residual heterogeneity was
reduced slightly when the prefecture-level mean temperatures and
temperature ranges were included as predictors (Table S6). The
multivariate Cochran’s Q test for heterogeneity was significant
for all external causes, transport, and drowning (p<0:001).
Furthermore, theWald test results showed that the prefecture-level
mean temperature or temperature range could explain, in part, the
heterogeneity across prefectures for all external causes, suicide,
and drowning (p<0:05). Table S7 and Figure S2 show how the
prefecture-specific RRs changed by each prefecture-level variable.
Specifically, the RRs of all external causes and drowning for cold
were positively associated with higher levels of mean temperature
(warmer prefectures) and dew point temperature (more humid pre-
fectures), whereas they were negatively associated with tempera-
ture range, longitude, and latitude, suggesting larger RRs for cold
were observed in southern (or western) prefectures. In contrast, the
RRs for heat were negatively associated with mean temperature
and dew point temperature in general, suggesting that RRs for heat
were larger in colder and less humid prefectures. Larger RRs for
heat were also associated with temperature range, longitude, and
latitude, reflecting northern (or eastern) prefectures. The RRs of
transport for heat were positively associated with higher levels of
precipitation.

Figure 4 depicts the pooled cumulative RRs in the stratified
analysis by sex and age groups. We observed that the RRs of all
external causes, suicide, falls, and drowning differed among the
subgroups, and CIs were generally not overlapping. Specifically,
the RRs of all external causes of death for both cold and heat were
higher in females and older people than in males and younger peo-
ple (Figure 4A,B). Similar patterns were observed in the RRs of
suicide for heat (Figure 4C). We also found higher RRs of falls for
cold in older people and heat inmales (Figure 4E,F). For drowning,
the RRs for cold were higher in females and older people (Figure
4G), whereas the opposite pattern was observed for heat, with
higher RRs in males and younger people (Figure 4H).
Corresponding numeric data are showed in Table S8.

Sensitivity analyses showed that the association estimates were
generally robust given the altered conditions for the knots of tem-
perature, lag days, and precipitation, except for falls (Table S9).
When we applied a shorter maximum lag of up to 7 d, the highest
risk of falls for heat shifted from the 88th to 99th percentile of

Table 1. Descriptive statistics for external causes of death from 1979 to 2015 in Japan.

Categories External causes Suicide Transport Falls Drowning

Total number of deaths 2,416,707 933,126 438,465 211,278 184,525
Male (%) 1,583,666 (65.53) 635,273 (68.08) 315,235 (71.90) 129,357 (61.23) 106,652 (57.80)
Female (%) 833,041 (34.47) 297,853 (31.92) 123,230 (28.10) 81,921 (38.77) 77,873 (42.20)
Younger (%)a 1,349,501 (55.84) 685,114 (73.42) 291,111 (66.39) 61,594 (29.15) 63,557 (34.40)
Older (%)a 1,066,845 (44.14) 247,842 (26.56) 147,342 (33.60) 149,680 (70.85) 120,942 (65.54)
Female to male death ratiob 0.53 0.47 0.39 0.63 0.73
Older to younger death ratioc 0.79 0.36 0.51 2.43 1.90
Daily mean (SD) 178.80 (163.77) 69.05 (17.55) 32.45 (12.29) 15.63 (5.65) 13.65 (8.46)

Note: SD, standard deviation.
aThere were 361(0.015%), 170 (0.018%), 12 (0.003%), 4 (0.002%), and 26 (0.014%) deaths missing age information on all external, suicide, transport, falls, and drowning,
respectively.
bThe total death number ratio between female and male from 1979 to 2015.
cThe total death number ratio between older and younger people (younger, <65 years of age; older, ≥65 years of age) from 1979 to 2015.

Table 2. Summary statistics for weather variables from 1979 to 2015 in
country level.

Weather variables Mean SD Minimum 25th Median 75th Maximum

Mean temperature (°C)a 15.2 2.3 9.0 14.4 15.9 16.5 23.1
Dew point temperature (°C)a 9.5 2.2 3.5 8.5 9.9 10.3 18.0
Daily precipitation (mm)a 6.6 1.9 3.6 5.5 6.6 7.8 12.1

Note: SD, standard deviation; 25th and 75th are percentiles.
aThe summary statistics were calculated based on the prefecture-level averages of each
weather variable.
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temperature, and the RR of falls for cold became nonsignificant
(Figure S3). In addition, the association estimates and exposure–
response curves changed only slightly after excluding data outliers
due to great earthquake disasters (Table S9 and Figure S4).

Discussion
In the present study, we investigated the short-term association
between ambient mean temperature and external causes of death

in Japan using a two-stage design. The exposure–response curves
between temperature and external causes of death were nonlinear
and differed for specific causes. We found that both cold and heat
exposures were associated with an increased RR of all external
causes of death, falls, and drowning, whereas only heat risks
were observed for suicide and transport.

Our results showed that both moderately low and extremely
high temperatures were associated with a high risk of all external
causes of death. These results are partly consistent with those of
previous studies that reported the risks of ambient temperature on
death due to external causes.6,7,8,9,10,11,25 Orru and Åström10 found
significantly high RRs of mortality due to external causes for heat
and cold (with lag04) using a time-series analysis in Estonia. A
recent study observed that a 1.5°C anomalously warm year would
be associated with a total of 1,601 (95% CI: 1,430; 1,776) addi-
tional injury deaths using a Bayesian spatiotemporal model in the
United States.11 Other studies have focused only on exploring the
risks of heat or heatwave,6,7,8,9 and all reported significantly
increased RRs of high temperatures on external causes of death.

For each cause-specific category, we found heat risks only
on suicide and transport, whereas we found J- and U- shaped
exposure–response curves for falls and drowning. Previous stud-
ies have demonstrated that high temperatures increased the risk
of suicide and transport,26,27,28,29,30 which is consistent with our
findings. However, studies focusing on the associations between
temperature and fatal falls and drowning are limited. Some stud-
ies found that reduced temperatures increased the incidence of
wrist or hip fractures in older people,31,32 as well as the presence
of higher wrist fracture risk with increased temperature in

Figure 1. Exposure–response curve and spatial map of prefecture-specific relative risks (RRs) for all external causes of death. (A): Exposure–response curve
with 95% CIs (shaded region) for all external causes of death, estimated by using a conditional Poisson model adjusting for seasonality, long-term time trend,
day of week, holiday, dew point temperature, and precipitation. Vertical lines indicate the locations for minimum mortality temperature (MMT) and RRs calcu-
lation of cold (below the MMT) and heat (above the MMT) risks, respectively. (B) and (C): Spatial map of prefecture-specific RRs of cold and heat. MMTs
varied by prefecture, and the locations for RRs calculation were the 20th and 99th percentiles of each prefecture mean temperature. See Table 3 for the corre-
sponding numeric data. Note: CI, confidence interval.

Table 3. Pooled RRs of all and cause-specific external causes of death in
Japan.

Outcomes

Temperature percentilea
RRs (95% CI) compared

with MMT

Coldb MMTc Heatb Cold risk Heat risk

External causes 20 72 99 1.09 (1.05, 1.12) 1.24 (1.20, 1.29)
Suicide NA 1 67 NA 1.35 (1.26, 1.45)
Transport NA 1 99 NA 1.60 (1.35, 1.90)
Falls 1 19 88 1.13 (1.02, 1.26) 1.14 (1.03, 1.26)
Drowning 1 77 99 2.33 (1.89, 2.88) 1.95 (1.70, 2.23)

Note: Pooled cumulative RRs with 95% CIs for all and cause-specific external causes of
death, estimated by using a conditional Poisson model adjusting for seasonality, long-
term time trend, day of week, holiday, dew point temperature, and precipitation. CI,
confidence interval; MMT, minimum mortality temperature (percentile); NA, Not
Applicable; RR, relative risk.
aThe percentiles of the temperature for centering and RR calculation.
bThe percentiles of the temperature for estimating cold (heat) risks, where the highest
risks were identified below or above the MMTs, given the restriction of the range
between the 1st and 99th percentiles of temperature.
cThe percentile of minimum mortality temperature, where the minimum risk was identi-
fied between the 1st and 99th percentiles of temperature in country level.
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younger men, which could be related to fatal falls. Other studies
have reported that warmer temperatures increase the risk of fatal
drowning or drowning hospitalization.33,34,35 Parks et al.11

explored the risks of temperature on falls and drowning together
and showed cold or heat risks on falls among different age groups
and only heat risk on drowning.

A notable finding of our cause-specific analyses was that the
high RR of drowning for cold (RR=2:33; 95% CI: 1.89, 2.88)
was mostly attributed to older people (Figure 4G). Hsieh et al.36

reported that the unintentional drowning mortality rates for older
people in Japan were highest among 31 Organization for
Economic Co-operation and Development (OECD) countries,
and over 70% of deaths involved bathtubs in 2014. We speculated
the high RR of drowning for cold can be explained by Japan’s
unique bathing manner,36,37,38 characterized by head-out water
immersion and high frequency of bathing. One potential explana-
tion could be that older people generally have a weaker thermo-
regulatory system than younger people and that some underlying
diseases or etiologies (e.g., acute ischemic heart failure, heat-
stroke, and blood pressure fluctuation) triggered during bathing
in winter could induce a higher risk of drowning.39,40,41,42

To date, the biological mechanisms underlying the association
between ambient temperature and external causes of death are
unclear. Some plausible behavioral and physiological pathways
have been suggested to explain these associations, which also help
to interpret why the RRs differed greatly by sex and age groups.
Suicide studies have hypothesized that variations in serotonin lev-
els with temperature may lead to suicide.43,44 Regarding transport,
driving performance deteriorates at warm temperatures,45,46 which

could potentially increase the rate of traffic accidents. People, espe-
cially young men, are more likely to engage in sports and outdoor
activities during warmer conditions,31,47 which partly explains the
higher RR of falls for heat in males and younger people than in
females and older people. The higher RR of falls for cold in older
people than in younger people could be due to slippery conditions
with ice or snow in winter.48,49 Swimming is likely to be more
commonwhen the temperature is higher, leading to a higher risk of
drowning accidents; this behavior also differs by sex and age.50

The cold risks on drowning in this studymay be related to Japanese
bathing culture.36

The abovementioned explanations might underlie the different
lag–response patterns between external causes of death and non-
accidental mortality, and the latter one has been commonly
observed up to 21 d for cold risks.22 In the present study, we
observed the cold risks on all external causes and drowning lasted
for 14 d, the lag–response patterns for heat risks varied by spe-
cific causes. We presumed that the shorter lag–response associa-
tions for external causes of death could be greatly influenced by
human behaviors compared with nonaccidental mortality, which
cardiorespiratory diseases largely account for. Further studies are
warranted to validate the different lag patterns.

This study has several strengths. First, we estimated the short-
term associations between temperature and all and cause-specific
external causes of death using a time-stratified case-crossover
design with DLNM. This modeling framework can depict the non-
linear and delayed association between temperature and external
causes of death, allowing us to examine the exposure–response
curves more precisely. In addition, applying the unified analytical

Figure 2. Exposure-response curves with 95% CIs (shaded region) for cause-specific external causes of death, estimated by using a conditional Poisson model
adjusting for seasonality, long-term time trend, the day of week, holiday, dew point temperature, and precipitation. (A) suicide; (B) transport; (C) falls; and (D)
drowning. Vertical lines indicate the location for minimum mortality temperatures (MMTs) and relative risks (RRs) calculation for cold (below the MMTs) or
heat (above the MMTs) risks. See Table 3 for the corresponding numeric data. Note: CI, confidence interval.

Environmental Health Perspectives 047004-5 130(4) April 2022



method makes the exposure–response curves and estimates compa-
rable for each health outcome. Second, we investigated the associa-
tions at both the national and prefectural levels using long-term
time-series data over 30 y and a relatively large sample size, which

was a result of the higher suicide and drowning rates in Japan than in
other countries in theOECD.51,52 Finally, the heterogeneous climate
conditions from north to south in Japan also helps to investigate the
spatial variation of the risks for cold and heat.

Figure 3. Spatial map of prefecture-specific relative risks (RRs) for cause-specific external causes of death. (A) RR of suicide for heat; (B) RR of transport for
heat; (C) RR of falls for cold; (D) RR of falls for heat; (E) RR of drowning for cold; and (F) RR of drowning for heat. The prefecture-specific RRs were calcu-
lated using the same percentiles of temperature across prefectures for heat (i.e., the 67th for suicide, 99th for transport, 88th for falls and 99th for drowning)
and for cold (i.e., the 1st for both falls and drowning), compared with those at the prefecture-specific minimum mortality temperatures (MMTs). See Tables
S5A,B for the corresponding numeric data.
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However, several limitations of this study need to be addressed.
First, we used the ambient mean temperature at the prefecture level
as exposure, because only prefecture-level aggregated data of mor-
tality were available. This exposure measurement error, known as
Berkson error, may reduce the precision or power of effects (wider
CI).53,54 Second, although we considered potential confounders by
the study design in our model, some time-varying covariates were
not included in this study, such as air pollution, air conditioner use,
and time spent outdoors. Third, the high RR of drowning for cold
might not be generalized to other regions or countries given that we
hypothesize that this finding may be driven by the unique bathing
culture in Japan. Further studies are needed to provide evidence
and confirm our results.

The present study highlights that a nonlinear relationship
exists between ambient temperature and external cause of death;
this relationship could be further stratified by sex and age. Given
that extreme warm and cold events will continue to increase in
the future,55 proactive public health adaptation strategies for cli-
mate change for all and vulnerable target populations would be
necessary. Public health interventions to encourage a change in
people’s behaviors by taking temperature into account may be
particularly useful because external causes of death could be
greatly influenced by human behaviors.

Conclusion
Our findings indicated the presence of a nonlinear relationship
between ambient mean temperature and external causes of death
in Japan. Both cold and heat were associated with increased risk
of mortality due to external causes; the shapes of the exposure–
response curves varied according to the specific causes, including
suicide, transport, falls, and drowning. The associations differed
by sex and age groups, which also varied depending on the spe-
cific causes. This study provides evidence that preventive meas-
ures targeted for total and vulnerable populations against external
causes of death, in conjunction with nonaccidental mortality,
should be considered in future adaptation policies.
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